
Scalable Computing Software Laboratory

Technical Report

Department of Computer Science

Illinois Institute of Technology

Towards a Unified Data Access
System: Mapping Files to Objects

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

Illinois Institute of Technology, Department of Computer Science

{akougkas, hdevarajan}@hawk.iit.edu, sun@iit.edu

February 2017

Technical Report No. IIT/CS-SCS2017-1

http://cs.iit.edu
10 West 31st Street, Chicago, IL 60616

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IIT-
SCS and will probably be copyrighted if accepted for publication. It has been issued as a Technical
Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IIT-SCS prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by
reprints or legally obtained copies of the article (e.g. payment of royalties).

mailto:sun@iit.edu
http://cs.iit.edu/

Towards a Unified Data Access System: Mapping Files to Objects

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

Illinois Institute of Technology, Department of Computer Science

{akougkas, hdevarajan}@hawk.iit.edu, sun@iit.edu

Abstract: File and block storage are well-defined concepts in computing and have been used as
common components ofcomputer systems for decades. Big data has led to new types of storage. A
highly successful newly emerged type of storage is object storage. However, object storage and
traditional file storage are designed for different purpose and for different applications. Many
applications need to access data from both types of storage. In this paper, we first explore the key
differences between object storage and the more traditional storage systems. We also provide several
efficient techniques to map user’s file structures to an underlying object store. Our evaluation shows
that by achieving an efficient such mapping, our library can grant almost 2x higher performance
against a simple file-to-object mapping and with mapping overheads as low as around 5%.

Keywords: File Systems, Object Storage, Integrated access, Unified storage, Mapping files to objects

1. Introduction
Historically, data are stored and accessed as files, blocks or objects in equivalent storage systems. File
and block storage have been around for considerably longer than object storage, and are something
most people are familiar with. These systems have been developed and highly optimized through the
years. Popular interfaces and standards such as POSIX I/O, MPI-IO, and HDF5 expose data to the
applications and allow users to interact with the underlying file system through extensive APIs. In a
large scale environment the underlying file system is usually a parallel file system (PFS) with Lustre,
GPFS, PVFS2 being some popular examples or a distributed file system such as GoogleFS or HDFS.
However, applications are increasingly dealing with high volume, velocity, and variety of data which
leads to an explosion of storage requirements and increased data management complexity. Most of
these file systems face significant challenges in performance, scalability, complexity, and limited
metadata services.
On the other hand, object storage was born from the need to increase the scalability and programmatic
accessibility of storing data. It is widely popular in the cloud community and there are a lot of different
implementations freely available. It offers simplistic APIs with basic get(), put(), and delete()
operations. Most notable examples include the Amazon S3 and the OpenStack Swift API. So far, object
storage has been used widely for stale, archival data, which fits nicely with the fact that changes are
accommodated by creation of new versions of data, rather than modifying existing data. However, this
seems to be changing and we see more high-performance and low latency solutions. Few examples
include Cassandra, MongoDB, and HyperDex. The flat name space organization of the data in object
storage, in combination with its expandable metadata functionality, facilitate its ease of use, its
scalability, and its resiliency via replicated objects. Lastly, object stores are the best option to store,
access, and process unstructured and semi-structured data making them a widely used storage solution
for Big Data problems.
In this paper, we explore several ways to map files to objects. Specifically, we designed and
implemented three new mappings of a typical POSIX file to one or more objects. These mappings can
cover MPI-IO as well since it is using POSIX files at its core. We also implemented a novel mapping of
an HDF5 file to one or more objects. Our mappings pave the way towards a unified storage access

mailto:sun@iit.edu

system. Using our mappings one can efficiently utilize a file interface to access and process data that
reside to a totally different storage subsystem such as an object store. With this extra functionality, we
can leverage strengths of each storage solution and complement each other for known limitations. This
is a powerful abstraction for the user who, under our solution, still uses the familiar file interface while
a scalable and efficient object store supports all I/O operations.

